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Hypotiwsis  ranking probiem arc an abstract ciass of
icarnirrg  probicms wi~cre an aigorithm  is given a set of i~y -
pothcses  ‘to rank according to P,yectd utility,  over some
unknown distribution, wilcrc ti~c cxpcctcd  ut!ilty  must bc
cstimatcci  from training ciata.

Hypothesis ranking probicms  arc an extension ol ilypoti]-
csis scicction  probicms  (Chicn95),  in wi~ici~ a iearning sys-
tem attempts to seicct tile bcs[ aitcrnativc  i]yimhcsis from a
set of ilypotilcscs. ‘i’ilc distinction bctwccn hypothesis rank-
ing aaci hyprrthcsis scicction is that in seicction the Icarning
aigoritilm is interested in a sing]c bcsl hypothesis, whiic in
ranking the learning aigorithm  must determine the rciativc
orcicr of aii of tile ilypotilcscs’.

Hypotbcsis evaluation is an important aspect of many ma-
ci]inc-icaraing  probicms.  For cxampic,  tile utiiity probicm
in spccdup  learning can bc viewed as a scicction problem
wbcrc a singic probicm-soiving i]curistic or strategy is ci]o-
scn from a larger set ofcaa(iidatcs.  ]n ti]is case, tile expcctcd
ulility  is typical iydcfincd as the avcmgc  Iimc to solve a proh-
Icm Tile attribute scicc[itm probicm in machine icarning can
aiso bc viewed as a bypotilcsis  scicction probicm in wilicb
onc n)LISI  scicct tile best attribute split from a set of prrssiblc
attribute spiits anti utiiity is often mcasureci  by information
gain. In rcinforccmcnt icarning, a syslcm must icarn tile ap-
propriate  action for each context, wilcrc utiiity is intcrprctc(i
as cxpcctcci rcwarci  (with immcciiatc fccciback).

In many of these applications, a system cimoscs a single
alternative anti never revisits ti~c decision. In contrast, if ti~c
system is abic to investigate several options (citi]cr serially
or in paraiici), sLIci~ as in beam scarcil or iterative broa(icn-
ing, the ranking formulation is most appropriate. Aiso, as is
the case with cvo]utionary  approacilcs,  a systcm may nceci
to popuiatc  future alternative hypotilcscs  on the basis of tbc
ranking of the current popuiation(Cioicibcrg89).

In any ilypothcsis  evaluation probicm,  aiways acilicving
a correct ranking is impossible in practice, bccausc  ti~c ac-
tual uncicriying  probability dis[ributiorrs  arc unavailable anti
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‘The algorithms and rcsalts  described in this paper trivially
extend to hybrid rar]kitlg-sclcct ior] problcn)s in which the systcm
must select and rank the top ill out of N hyputhc.ws.

ti]crc is aiways a (pcrilaps  vanisilingiy)  mail cbrrncc ti]at the
aigoriti~ms  wiii bc uniucky bccausc  oniy a finite number of
sampics  can bc taken. Conscqucntiy,  rather than aiways rc-
ciuiring an aigoritilm to output a correct ranking, wc impose
probabilistic criteria on the rankings to be produced. Whiic
scvcrai  famiiics of sLIcil rcquircmcnts exist, in tilis paper
wc examine two, ti]c prrthably  q)ptrtxiwafc[-y  r-orrcct (PAC)
rccluircrncn(  from ti)c computational icarning theory com-
munit y (Vaiiant84)  and the expected loss (F.i.) requirement
frcqucntiy  LIscci in ciccision theory and gaming problems
(?). W’itil tile PAC rcquircmcnt,  an aigoriti~m produces a
ranking ti~at with high probability is ciosc to correct (e.g.,
incorrect micrings  arc bctwccn  hypotheses witil simiiar cx-
pcctc(i utiiitics). The 111. rcquircmcnt bounds tile expected
ioss, wi]crc ioss rcprcscnts  tile ciiffcrcncc  in utiiitics between
two incorrectly orxicrcd  hypotilcscs.

l’ilc principai contributions of this paper arc:

s Wc define two famiiics  of ilypoti]csis  ranking algorithms
b:tscd on rccursivc  selection and mljaccncy.  We pro-
vi(ie specific cictaiis on how to appiy them to a probably
approximately correct (PAC) anti cxpcc~cd ioss (H.) de-
cision criteria.

● Wc prmvicic  empiricai  rcsuits  demonstrating tile cffcctive-
ncss of these algorithms at acilicving rcqucsteci  decision
criteria on syntimtic (iata,

● Wc provicic crnpiricai  rcsuits showing how ti~csc aigo-
ritilms  signifrcantiy  outperform existing statistical meth-
ods on real-wcrrid data from a spacecraft design optin~i7a-
tion application.

h’atlkittg  as Reci(tsive  Se[cctimt:  One obvious way to cic-
tcrminc a ranking l{] , . . . . 11~ is to view ranking as recursive
scicctirm from the set of remaining candidate hypotilcses.
In ti~is view, tile ovcraii  ranking error, as si~ccificd by tile cic-
sirwd con ficlcncc in PAC aigoritilms  and tile loss thrcsbhoid
in Et. algoritilms, is first distributcci  among k — 1 selcctiotr
ct-tor.~ which arc tilcn further subdivicicci  into paitw’ise  cow-
pfiri.so)l f’twr.s. IJata is then sampicci untii the estimates of
ti~c pairwisc  comparison crmr (as ciictatcci by equation ??
or ??) satisfy the boun[is  set by the algoritim.

R(//lki)rg hy AdjaceHcy  Cotty)(trism Another intcrprcta-
(ion of ranking confidence (or ioss)  is tilat oniy acijaccnt
cicmcrrts in tbc ranking need be compared, In tilis case, tile



ovcrull  ranking error is divided directly into k – 1 pairwisc
comparison cmrs. ‘l’his lcacls to the following confidence
cqua(ion for the PAC cri[cria:
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Abstract

This paper considers the problcm of tcarnirrg  the rank-
ing of a set of alternatives based upon incomplete in-
formation (e.g., a Jimitcd nornhcr of observations). At
each decision cycle, the system can oLI[pLlt a complete
ordering on the hypotheses or decide to gather a(JcJi-
tirrnal information (e.g., observations) at some cost.
Balancing the cxpcctc(J  utility of the additional infor-
mation against the cost of acquiring the information is
the central problcm we acJdrcss.
The hypothesis ranking probJcnl  is a gcncraliration of
the previously stucJiccl  hypothesis selection problem -
in selection, an algorithm must SCICCI  the single hcst
hypothesis, while in ranking, an algorithm must or-
der all the hypo(hcscs. Wc dcscrihc two algorithms
for hypothesis ranking and their application for prob-
ably approximately correct (PAC) and cxpcctcd loss
(Ill.) learning criteria, Empirical results arc provicJed
to dcrnonstratc the effectiveness of these ranking pro-
cedures on both synthetic datasc  Is and real-world data
from a spacccraf[ design optimization applica[ioa.

lnt reduction
In many learning applications, the cost of information can
be quite high, imposing a rcquircmcnt that the learning
a]goritbms  g]can as Jnuch usable information as possible
with a minimum of data. I:or example:

● in spccd LIp learning, the cxpcnsc crf proccssin.g  each train-
ing example can be significant (lhdcp~lli92).

. In decision tree learning, the cost of using all available
training examples when evaluating potential attributes
for partitioning can be cornputationally  cxpcnsivc (Mu-
sick93).

● la evaluating medical treatment policies, aclditimral train-
ing examples imply subrrptimal treatment of human sub-
jects.

● la clata-poor  applications, training dal:] may he very
scarce and learning as well as possible from limited clata
may bc key.

When one  wishes some sort of guarantee on the quality
of a solution, a statistical ciccision theoretic framework is
useful. ‘Jkc framework answers the questions: }]rsw much

information is enough? At what point do wc have adequate
information to rank the alternatives with some requested
confidence?

This paper focuses on parametric ranking problems, a
general ciass of statistical machine ]carning prob]cms  in
which the goal is to rank a set of alternative bypothc-
scs where the goodness of a hypothesis is a function of
a set of unknown parameters (e.g., (Gratch92;  Ch’cincr92;
Kaclbling93;  Moorc94;  Musick93)).  The learning system
determines ancJ refines cs(imates  of these parameters by us-
ing training examples, with a secondary goal of minimizing
learning cost.

The principal contributions of this paper arc:

. WC define two families of hypothesis ranking algorithms
basccl OJI recursive selection and acijaccncy. We pro-
vide specific details on how to apply them to a probably
approximately correct (f’AC) and expected loss (F.1,) de-
cision criteria.

● Wc provide empirical results demonstrating the cffcctivc-
ncss of these algorithms at achieving requested decision
criteria on synthetic ciata.

6 We prm’iclc empirical results showing bow these algo-
rithms significantly outperform existing statistical nlcth-
ods on real-world data from a spacecraft design optin~iza-
tion application.

The rernaindcrof this papcris structured as follows. First,
we describe the hypothesis ranking problem more formally,
including definitions for the probably approximately cor-
rect (PAC) and cxpcctcd  loss (F. I.) decision criteria. We
tbcn define two algorithms for establishing these criteria for
the hypothesis ranking probJcrn  - a recursive hypothesis sc-
Icction  algorithm and an adjacency based algorithm. Next,
we describe empirical tests demonstrating the effectiveness
of these algorithms as WC1 i as documenting their improved
performance over a standard algorithm from the statistical
ranking li[cratarc.  Finally, we describe rclatcci work anti
fu[ore  extensions to the algorithms.

Hypothesis Ranking Problems

Hypothesis ranking problems arc an abstract class of learn-
ing problems where an algorithm is given a set of hypotheses



. ?
,

to rank according to expected  l(filify over some unknown dis-
tribution, where the cxpcctcd  utility must bc estimated from
training data.

Hypothesis ranking problems arc an extension ofhypotl!-
csis selection problems (Chicn95),  in which a learning sys-
tcm attempts to select the best alternative hypothesis from a
set of’ hypotbcscs. l’hc distinction between hypothesis rank-
ing and hypothesis selection is that in selection the learning
algorithm is interested in a single best hypothesis, while in
ranking the learning algorithm must determine the relative
order of al [ of’ the hypotbcscs}.

Hypothesis evaluation is an important aspect of many
machine learning problems. l~or example, the utility
problem in spccdup  Icarning can be viewed as a selec-
tion problcm where a single problcn-solvi~~g  heuristic or
strategy is chosen from a larger set of candidates. 1 n
this case, tbc expected utility is typically defined as the
average time to solve a problcm (CkWh~2;  CJ~’einc192;
Mintmrt38).  l’he attribute selection problcm in machine
learning can also bc viewed as a hypotbcsis  sclcctioo prob-
Icm in which one must select the best attribute split from a
set of’ possible attribute splits and utility is of’tcn measured
by information gain (Musick93).  In reinforcement Icarnirrg,
a system must Icarn the appropriate action for each context,
where utility is interpreted as expcctcd reward (Kaclbling93)
2

in many of tbcsc applications, a system chooses a single
alter-native and never revisits the decision. In contrast, it’ the
system is able to investigate several options (either serially
or in parallel), such as in trcam search or iterative broaden-
ing, the ranking formulation is most appropr-iatc. Also, as is
the case with evolutionary approaches, a system may need
to populate future alternative hypotbcscs  on the basis of the
ranking of’ the cut-rent pCJpul;i[ioll(Goldbcrg89).

la any hypothesis evaluation problem, always achieving
a correct  ranking is impossible in practice, bccausc  the ac-
tual undcrlyirrg  probability distributions arc unavailable and
there is always a (pcrbaps vanishingly) small chance that the
algorithms will bc unlucky because only a finite number of
samples can bc taken. Consequently, rather than always re-
quiring an algorithm to output a correct ranking, wc impose
probabilistic criteria on the rankings to be produced. While
several families of such rcquircnlcnts  cxisl, in this paper
wc exam i m two, t hc ptobobly  apprrzritmtely comet (PAC)
requirement from the computational learning theory com-
munity (Valiant84) and the expected  loss (EL) rcqttircmcnt
frequently used in decision theory and gaming problems
(RusscI192).  With tbc PAC requirement, an algorithm prc)-
duccs a ranking that with high probability is close to correct
(e.g., incorrect orderings are between bypothcscs  with sin}-
ilar cxpcctcd  utilities). The IL requirement bounds tbc cx-
pcctcd loss, where loss represents the diflcrcnce in utilities

1 The algorithms and results described in this paper trivially
extend to hybrid ranking-selection problem in which the system
must select and rmk the top M  oLll of N hypotheses.

2Notc that the analogoas rcinfommcnt  Icarning probtcn]  is the
onc in which we arc learning the appropria(c action with irnmcdiatc
feedback rather than delayed feedback.

bctwccn two incorrectly ordered hypotheses.
lhc cxpcctcd utility of a hypothesis can be estimated

by observing its values over a finite set of training cxan-
plcs. However, to satisfy the PAC~ aacl Et.  requirements, an
algorithm must also bc able to mason about the potential
dif(crcncc  bctwccn the estimated and true utilities of each
bypothcscs.  I.ct LIi be the true cxpcctcd  utility of hypothesis.
i and let U, bc the estimated cxpcctcd  utili(y  of hypothesis i.
Without loss of generality, let us presume that the proposed
ranking of hypotheses is Ul > U2 >, . . . . > U_ I > Uk.
lhc PAC rcquircmcnt  sta[cs that for some user-spcciiiccl (
with probability 1 – d:

h- I
~ [(U.+ c] > Afltx(u,,,,..,u  k)] ( 1 )

i: I

Comspondingly,  Ict the loss 1, of selecting a hypothesis 111
to bc the best from a set of /: hypotheses }]{, . . . . 11~ bc as
follows.

I>(J/,,  {1/1,...,  A})}) = AfAx((),  AfAx([J2,...,  [Jk) – Ul)
(2)

and Ict tbc loss ]/l. of a ranking ]It, . . . . }lk bc as follows.

k- I
l{/,(l/,,..., L)L) = ~1,(1/,,  {l/i+ [,..., K})}) (3)

i. I

A hypothesis ranking algorithm which obeys the cxpcctcd
loss rcquirmcnt  must produce rankings that on average
have Icss than the requested expcctcd  loss bound. Con-
sider  ranking tbc hypotbcscs  with cxpcctcd  utilities: Ul =
1.(), U 2 = 0.95, (J3 = 0.86. I’hc ranking (J2 > Ul > 1J3 is
a valid PAC ranking for- f = 0.06 but not for c = 0.01 and
has an observed loss of 0.05 + O = 0.05.

However, while the confidence in a pairwisc  conlpari-
son bctwccn  twn hypotheses is WCII unclcrstood,  it is Icss
clear how to ensure that desired confidence is met in the set
of comparisons required for a selection m lhc more con-
plcx set of comparisons required for a ranking. Equation 4
dctincs the confrdcncc that [J, + ( > [Jj,  when the distri-
bution underlying the utilities is normally distributed with
unknown and trncqual variances.

(~=d, @,+#

,<, _  ~ ) (4)

where @ rcprcscnts  the cunluh~tivc standard normal distri-
bution function, anti TL, ~i_j, anti $i _ ~ arc the size,  sanli~ic
mean, and sample stanciarci cicviation  of the biockeci ciiffcr-
cntiai  distribution, rcspcctivcly3.

I.ikcwisc,  computation of tile cxpcctcci ioss for asserting
an ordering bctwccn a pair of hypotheses is well undcrstooci,
but the estimation of expcctcd  loss for an entire ranking is
less clear. Equation 5 defines the cxpcctcci ioss for cirawing

3Notc that in our apimach  wc Mod  examples to further rc-
ducc sampling complexity. Blocking forms estimates by us-
ing tile diffcrcncc in utiiity between competing hypotheses on
each observed cxarnplc. Ftlocking  can significantly reduce
tbc varimcc in the data when tbc hypotheses arc not indc-
pcncicnt. it is trivial to modify the formulas to address the
cases in which it is IMM  possible to block data (SCC (Moore94;
Chicn95) for farther details).



(I]c  conclusion (Ji > [J,i, again unclcr the assumption of
normality (SCC (Chicn95)  for further cictails).
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(5)

In the next two subscctiorrs, wc dcscribc  two interpreta-
tions for estimating the Iikclihrm(f that an overall ranking
satisfies the PAC or M. rcquircrncnts  by estimating and
combining pairwisc PAC. crmrs or IiI, estimates. Each of
these intcrprctaticms lends itself clircctly to an algorithmic
i[~~plcl~lcr~t:~tioll as dcscribccf below.

Ranking as Recursive Selection
Onc obvious way to cictcrminc a ranking 111,..., }Ik  is to
view ranking as rccursivc  selection from the set of rcnlain-
ing candidate hypotheses. In this view, the overall ranking
error, as spccifrcd by the cfcsircd confidence in PAC algo-
rithms and the loss thrcshbold  in El. algorithms, is first
distributed among k – 1 selec{im errors  which arc then
furt hcr subd i vidcd into painti.rc mmpat-ism errors. Data is
then sampled until the estimates of the pairwisc  comparison
crmr (as ciictatcd by equation 4 or 5) satisfy the bounds set
by the algorithm.

Thus, ano[hcr  dcgrcc of frccclom  in tbc design of rccursivc
ranking algorithms is the mctlmd  by which the overall rank-
ing error is ultimately distributed among individual pairwisc
comparisons bctwccn  hypotbcscs.  ‘1’wo  factors influcncc
the way in which wc compute crmr distribution. First, our
mrrdcl of error combination determines how the error al-
located for individual comparisons or selections combines
into overall ranking crmr and thus how many carrdidatcs  arc
available as targets for tbc distribution. LJsing IIonfcrmni’s
inequality, onc corubinccrmrs additively, but amorcconscr-
vativc approach might bc to assert that bccausc tbc prcdictcd
“best” hypothesis may charrgc during sampling in the worst
case the conclusion might dcpcnci on all possihlc  pairwisc
comparisons and thus the error should bc distributcci  among

( )
all ; pairs of hypothcscs4).

Sccon’d, our policy with respect to allocation of error
among the candidate comparisons or scfcctions dctcrmincs
how samples will bc distrifwtcd.  FOI example, in some
contexts, tbc conscqucnccs of early sc[cctions far rrutwcigh
tbosc of Iatcr select ions. For these scenarios, wc have inlplc-
rncntcd  ranking algorithms that divide overall ranking error
unequally in favor of earlier sclcctionss.  Also, it is possi-
ble to divide selection crt-or into pairwisc error unequally
based on estimates of hypothesis parameters in order to rc-
ducc sanlpling cost (for cxan]plc, (CJratch94) allOcatcs crlr)r
rationally).

Within tflc scope of this paper, wc only consicicr  algo-
rithms that:  (1) combine pairwisc error into selection error
additively, (2) crrmbinc  selection error into rrvcrall rankiag
error additively and (3)allocatc error equally at each Icvcl.

4For a discussion of this issue, scc pp. 18-20 of (Ciratch93)
5Spacc constraints prccludc their description here.

Onc disadvantage of rccursivc  selection is that once a
hypothesis has been sclcctcd,  it is removed from tbc pool
of candidate hypotheses. This causes problems In rare in-
stances when, while sampling to incrcasc  the confidence
of srmc Iatcr selection, the estimate for a hypothesis’ mean
changes cnougb that sornc previously sclcctcd hypothesis no
longer dominates it. In this case, the algorithm is rcstarlcd
taking into account the data sarnplcd so far.

These assumptions result in the following formulations
(where d([~j D, {U~ , . . . . ~~k})  is used to denote the error
drrc to tbc action of selecting hypotbcsis  1 under Equation 1
from the set {111, . . . . 11~ } and 6(UI D {[J2, . . . . [Jk }) denotes
the cl-ror clLIc to selection 10ss in situations where Ilquation
2 applies):

A,,. (111 > [12 >... > [Jk)  = &CC([J2 > 1 1 3  > . , . >  [/k)

+($([J[ b. {U2, . . . . UL})
(6)

where J, ,C ([Jk) == 0 (the base case for tbc recursion) and
the selection error is as defined in (Chicn95):

h

d([~f DC {1 J2,..., lJL})  = ~hj,i (7)
i. 2

using Ilquation 4 to compute pairwisc confidence.

1.

2.

?. .

4,

Algorithmically, wc implcn~cnt  this by:

sampling a default nrrmhcr  of times to seed the cstirr~atcs
for each hypothesis rncan and variance,

allocating the error to selection and pairwisc crrmpmi sons
as indicated above,

sampling until the desired confidences for successive sc-
Icctions is met, and
restarting the algorithm if any of the hypotheses means
changed significantly enough to change the overall rank-
ing.

An analogous rccursivc  selection algorithm based on cx-
pcc~cd loss is clcfincd as follows.

I:I,<c  ([J,  >  [1,  > . , .  >  [1,  ) = 1:1>,.  <(1J2 >  [J, > . . .  >  [Jk)
-tJ;I/(LJl  D {[ J2,.,.,  [Jk})

(8)

where ljl,,CC(Uk)  = O and tbc selection EI. is as defined in
(Chicn95):

EL(LJ1 D {U2, . . ..[JL }) := ~E1,(U@, ) (9)
1, 2

Ranking by Adjacency Comparison
Anrrthcr interpretation of ranking confidence (or loss) is that
only acljaccnt clcmcnts  in tbc ranking need bc compared. In
this case, the overall ranking error is divided directly into
k– 1 pairwisc comparison errors. This Icads to the following
confidence equation for the PAC criteria:

!,-  1
fiocij(CJl > U 2 >.. .  > (Jk) = ~r$%,i4 , (lo)

,. I



And the following equation for the El. critcri:t.

k- 1

h’L.(~(u, > U2 >... > uk) == ~Lww+ 1) (11)
i= 1

BccaLw  ranking by comparison of’ acljaccnt hypotheses
does not establish the dominance between nomad jaccnt hy-
potheses  (where the hypotheses arc orxfcrcd by observed
rncan utility), it has the advantage of requiring fewer LXmI-
parisrms than rccursivc  sclcctioo (aaci thus may rcqLlirc
fewer samples than rccursivc  selection). However, for the
same reason, acijaccncy algorithms may bc less likely to
correctly bound probability of correct selection (or average
loss) than the rccursivc  sclcctic)n algorithms. In the case
of the PAC algorithms, this is because c-don~inance  is not
necessarily transitive. 10 the case of the 1;[. algorithms,
it is because expected loss is not additive when considcr-
in.g two hypothesis relations sharing a common hypothesis.
For instance, the siz.c of the blocked diflcrcntial  distribution
may be diflcrcnt for each of the pairs of bypothcscs  being
compared.

Other Relevant Approaches

Most standard statistical ranking/selection approaches make
strong assumptions about the form of the problem (e.g.,
tbc variances associated with underlying Lltility distribLl-
tion of the hypotheses might be assumed known and equal).
Among tbcsc, l’Llrnbuli  and Weiss (lurnbul184) is most con)-
parablc  to our PAC-based approach6.  Turnbull and Weiss
treat hypotheses as normal random variables with Llnknowa
mean and unknown and unequal variance. However, they
make the additional stipulation that hypotheses arc indc-
pcndcat. So, while it is still reasonable to usc this approach
when the candidate hypotheses arc not indcpcndcnt, cxccs-
sivc statistical error or uoncccssarily  iargc training scl sizes
may result. In the case that tbc hypotheses arc truly indc-
pcndcnt,  lirrobull  and Weiss’ tcchniqLlc  should bc able to
exploit this knowledge and outperform our methods which
do not adopt this assumption.

Empirical Performance Evaluation

Wc now (Llrn to empirical evaluation of (he hypothesis rank-
ing techniques on both synthetic and real-world datascts.
This evaluation serves three purposes. First, it demonstrates
that the techniques perform as prcdictcd (in terms of bourn-
in.g the probability of’ incomct selection or expected loss).
Second, i( validates the performance of the techniques as
compared to standard algorithms from the statistical litcra-
tLm. l’bird, the evaluation demonstrates the robLlstncss  of
the new approacbcs  to real-world hypothesis ranking prob-
lems.

“PAC-based approaches have been investigated cx[cnsivcly in
the statistical ranking and selection litcrirturc under the topic of
con@fcIm’ ir~trrval Im.wd  algori  lhms (SCC (El asccb85) for a review
of the recent litcratLm).

Methodology

An experimental t[-ial consists of solving a hypothesis rank-
irlg problcm with a given tcchniqLlc  and a given set of prob-
lem and control parameters. WC nleasL1rc  performance by
(1) how well the algorithms satisfy their respective crite-
ria; and (2) the nLlnlbcr of samples  taken, Since the pcr-
fornmcc of these statistical algorithms on any single trial
provides little information about its overall behavior, cach

trial is repeated nlLlltiplc times and the rcsLllts arc averaged
across trials. Synthetic cxpcrimcntal  trials were rcpcatcd
500 times, while trials on the real-world data were repeated
100 times. Because the PAC and expected loss criteria arc
not clircctly con~parablc,  the approaches are analyzed sepa-
rately.

Waluation on Synthetic Datasets
I~valLlation  on synthetic data is used to show that: ( 1 ) the
techniques correctly boLlnd probability of incorrect ranking
and expected loss as predicted when the Llndcrlying assun~p-
tions  arc valid even when the underlying utility ciistributions
arc inbcrcntly hard to rank, and (2) that the PAC tcchniq Llcs
compare favorably to the algorithm of’ ‘1’LlrnbLll]  and Weiss
in a wide variety of cil-cumstanccs.

I;or the synthetic datascts,  the utility distribLltions  of the
hypotheses were modeled as random variables defined on
son]c underlying pararnctcrixcd  distribLltion.  ‘1’hos, charac-
tcri~,ing a ranking problem consists of choosing some nun-
bcr of hypotheses to rank and then assigning a distribution
and val Llcs for its parameters to the ranclom variables rcprc-
scnting the Lltility  distributions for these hypotbcscs.  In our
case, wc model the utilities as independent normal random
variables with some mean and standard deviation. l’bus, if
wc let k be the nLln~bcr of hypotheses, then each hypothesis
ranking problem is described by the 2k pal-anwtcm spcci -
fyin.g the expected utility and utility standard deviation for
each hypothesis. In general, while several more parameters
may be required to cbaraclcrizc a ranking problem fLl![y7,
the number of hypotheses and the choices for the paran~c-
tcrs of the utility distributions oncicrlying  these hypotbcscs
cbaractcrizc the ovct-all difficLllty of the ranking problem.

l’hc statistical ranking and selection conm~Llnity uses a
standard family of selection problems with known diffi-
culty to analyze the performance of hypothesis selection
strategies. l“hc method, called the least favorable config-
Lu-ation  (1.FC) of the population means is that assignment
of the parameters to distribLltions  which is most likely to
cause a tcchniquc  to choose a wrong hypothesis and thLls
provides the mos[ scvcrc test of the tcchniqLlc’s abilities.
Uodcr  this configuration, all Lltilitics arc indcpcndcnt  nor-
mally distribLltcd variables of equal variance. k – 1 of the
hypotheses have utilities with cqLull  expectation, I(, and the
remaining hypothesis has expected utility // + c.

71k~r  instance, when samples arc allocated rationally in
(Ctlicn95), il bccomcs necessary to resign parameters to a cost
distribution as well, or if only a few of the candidate hypotheses
were to be ranked, the nLlnlbcr of hypotheses to rank WOLlld  bc
another problcrn  parameter.
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Table 1: Fstimatcd expected total number of csbscrvations
by PAC algorithms in the stepped means configuration.
Achicvcd  prmbabilily  of correct ranking is shown in parcn-
lbcsis.

E; ~i

!.? g IIIILNHLI[,I, J, AC:r,, I’AC:od
3 (175 ‘2 – 62 (() w) 5$ ((),)5) 3X(07X)
3 075 3 117(OR ~)) — 101 ((1X6) 4,) (() xl)]
3 (1 w) 2 97 (() %) 86 ((l ’11) 5X ((l ~)2J
3 (Iv(l ? 1X3  (() w) 152 ([l w) 9(, (1) x<))
3 () v5 2 1311  ((),)7) 122(0w) m,) (I1 <)7)
3 ()x 3 ’23! ((l w,) 2(M ((l ~)f) 146 (0 w)
5 (175 2 J77 (() X7) 165 ((1~)5) 1(1$ ((l X7)
5 075 3 32 I (() ~)5) 314 (() 93) 161 (075)
5 ()90 2 “ 245 ((198) 245 (II 97) 163(091)
5 [)90 3 445 (I1 w) 4(FJ (() 91) 2w(l)~J2)
5 ()95 2 299 (() w) 294 (() 9h) 216(1(K))
% 1)95 3 M I (098) 53X(09X) 371 @ 92)

1(1 075 2 55X (092) 624(091) 345 (() 85)
10 ()75 3 I,(II5 (094) 1,042 ((1 95) 635(083)
10 (1 WI 2 7(K) (0 97) 742 (0 96) 52! ((191)
10 () 1)() 3 1,254 ((l w) 1 ,3s) (() ~J7) X83 ((1 w)
1[1 (195 2 X21 (1 lx)) 877 (()<)7) 66[ ((l 94]
1(1 (t w 3 1 ,46? (0 w) 1,%9 (() w) 1,164 (093)

13ccausc  wc arc intcrcstcd in hypothesis ranking problems
rather than selection problems, wc usc a gcncr-alization  of
the I.FC that we call stcppcci means. In tilis configura(iorr,
me of the hypotheses is assigned cxpcctcd  utility II nnci
successive hypotheses arc assigned expected utiiity II – ic
fori from i,..., k – i.

In gcncrai,  probiems based on the Icasl favorabic con-
figtrraticm  become more ciif[icult (i.e., rcqLlirc more sanl-
plcs) wi~cn the number of hypotheses k increases, the con]-
mon utiiily variance a 2 increases, or the ciiffcrcncc  in the
means of ti~c utiiity ciistributimrs  ciccrcascs.  in lhc stan-
dar(i mcthodoiogy,  a tcchniqLlc is cvaiuatcci by its abiiity to
achieve a con fictcnce ot’ correct sclccticm  -y* Llsiog scvcrai
sct[ings for 1; anti ~. This iast r-atio combines o and c into
a single c]uanlity which, as it incrcascs,  makes the problem
more cii fficult. Ibis nlcthcxioicsgy  cxtcncis to stcppcci means
ciircctly.

The hypoti]csis  ranking strategies thcmscivcs  have ai-
gywithm co)lttd pcitmetets that govern how they attack a
probiem.  l’hc PAC tccbniqucs have time contrc)l paranlc-
ters: an initial sample size no, a cicsircci  confidence of correct
ranking T* and an indifference setling CR. ‘1’hc  cxpcctcd  ioss
techniques have two controi parameters: an initiai sample
siz.c ~Lo and a loss thresholci  11*.

Iior our cxpcrimcnts, 710 = 7, // = 50, 0 = 64, anti aii
other parameters arc varicci as inciicatcd.

l’hc obscrvcci number c~f sampics  rcciuircci an(i achieved
accuracy of the PAC. techniques on the steppcci means con-
figuration arc shown in Tabic i. The results iociicatc tha( ali
systems arc roughi y comparable in tile number of examples
reciuircd to choose a bypoti]cscs. As cxpcc(cd, the number
c)f cxampics increases witil k, T*, and ~. Thc l)~~~a~j

‘Note that in crLir formulation of the s[cppcd means test for the
PAC. approaches, c is both the cliflcrcncc in the cxpcctccl mean
of successive hypotheses ad the incliflercncc interval of the al-
gorithm. Thus, c plays the roles of both problem pzrramcter and
cm ml paramct cr here.

labic 2: I;stirnatcd expected tc)tai number of observations
of M. aigoriti~rns in stepped means ccmfigura(icm. Observeci
average ioss ofm-oduccdrankirm.

, L .
t , .-

:37;1 ““ .—
1)7$ 10? 1) 5 56 I I (A

5 I i I ()5 I 46$ I (t 4 I 24? I ()7 I

algorithm required the Icast number of samples hut was
inconsistent in meeting the desired accuracy bound. It is
interesting tilat the Turnbuli and Weiss mcthc)d did not sig-
nificantly outperform the PAC techniques cicspitc the fact
tilat [he aigorithm assumes that tim hypotheses arc indcpcn-
clcnt (as is the case in tbc stepped means configuration),
while the PAC. approaches cio not make this assumption.

In LIE cxpcctcd ioss experiments, wc ran the expected loss
hypothesis ranking algorithms on the same stepped means
configurations dcscribcd  above with a range of cxpccteci
loss bounds. Table 2 shows ti]c results of this experiment,
displaying the number of samples required to produce a
ranking ami the average c~bscrvcd ioss for each ccmfigura-
tion. These rcsuits show that the El., CC algorilhm  correctly
bcmndcd  the ioss and that the EIJ~ ~j algorj(hn~ required lCSS
sampics  tilan tile E1.r,C algorithm, but ciici not correctiy
bound tiw tile expected loss.

~~},a][l~ti~~  O“ Rca] I)~tasets

l’hc  test of rcai-worici  applicability is based cm ciala clrawn
from an actual NASA spacecraft design optimization appli-
cation. Ti~is ciata provides a strong tcs[ of the applicability of
the techniques in that ali of the statistical techniques make
some form of normality assumption - yet (I1c data in this
appiicaticm  is highiy nrm-nrmnai.

The goal of the spacecraft design problem is to cictcrrninc
a gooci set of pbysicai dimcnsicms for a pcnetrator - a smail,
robust probe cicsigncci to impact a surface at cxtrcmciy  high
vciocity with the goal of performing deep soil sampic  anai-
ysis. Spccificaiiy, wc use design anti simulation data from
tim Ncw Miiicnnium Deep Space Two mission pcnetrator
cicsign.

For our casting of the design problcm,  we holci the shape
c)f the pcnctrator constant and rank cicsigns based on of the
variabics  c)f pcnetratc)r  diameter anti length. For a specific
cicsign a sample is taken by choosing impact orientation,
impact vciocity, and soil cicnsity from a paramctcrizwi nlul-
tivariatc distribution and tium caiiing a compicx  physical
simulation to cictcrminc if and to wilat depth the pcnetra-
lor borcci into the Martian surface. The goal of the pcnc-
tratm design problcm  is to dctcrrninc  the ciimcnsions that
maximize tile probability c}f pcnctra(icm,  and in cases of



?,. ,

Table  3: Iistinwrtcd expcctcd  total numbct of ohscrvations
to rank DS-2 spacecraft designs. Achieved probability ol
correct ranking is shown in parenthesis.

E i “UZ%3%

lhblc 4: Estimated exncctcd  total number of observations
and cxpcctcd loss of an incorrect ranking of I) S-2 pcnctrator
dcsi~ns.

penetration, maximize penetration depth.
Tables 3 ancl 4 show the results of applying the PAC-

bascd, l’ornbull, and cxpcctcd  loss algorithms to a ranking
problcm in which the system is rcqucs(cd to rank 10 pcn-
ctrator dcsigns9.  In this problcm the utility function is the
dcptb of penetration of the pcnctrator,  with those cases in
which the pcnctrator dots not penetrate being assigned zero
utility. As shown in ‘Ihblc 3, both PAC  algorithms signifi-
cantly  ou(pcrlormcd  tbc Turnbtrll  algorithtn,  which is [o bc
cxpcctcd bccausc  the hypotheses arc somewhat cor-rclatcxl
(via impact orientations and soil dcnsi[ics). ‘Ihblc 4 shows
that the EIJ7 CC cxpcctcd 10SS algorithm cf[’cctivcly  bounded
actual loss but the ELa ~J algorithm was inconsistent,

Discussion and Conclusions
l’here arc a nLlnlbcr of areas of related work. Firsl, there has
been considcrab]c  analysis of hypothesis selection prob-
lcn]s. Sclcc(ion problems have been formalixcd using a
Baycsian  framework (Moorc94;  Rivcst88) that dots not rc-
qLlirc an initial sample, but uscs a rigorous cncodirrg of prior
knowledge. Howard (Howard70)  also details a Baycsian
framework for analyzing learning COS( for selection prob-
lcn]s. If onc uscs a hypothesis selection fran~cwmk  for-
ranking, allocation of pairwisc  errors can bc performed ra-
tionally (Gralch94).  Rcinforccmcnt Icarning work (Kacl-
bling93) with immccliatc feedback can also bc viewed as a
hypothesis selection problcm.

In summary, this paper has dcscribcd the hypothesis rank-
ing problcm,  an extension to the hypothesis selection prob-
Ictn. Wc defined the application of two decision criteria,
probably api)to.rittmtc[y correct  and e~jwcted  loss, to this
problcm.  Wc tbcn  defined two farnilics  of algorithms, rc-
cursivc  sclcc(ion  and adjacency, for solution of hypotbcsis
ranking problems. Finally, wc demonstrated the cffcc(ivc-
ncss of these algorithms on both synthetic and rca-world

9’1’rue  expccteci  uti l ity valLIcs  are  con)putcci  by  per t ’c r r t l ) i t )g  a

deep sample of 20,000 samples. l’hcsc cxpcc[cd u(ilitics can then
bc used to compute PAC c – volidilg of  rankings and actLlal loss,

datascts,  docLrnwnting improved pcrformanm o~,cr- existing
statistical apprmchcs.
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